Hyperparathyroidism other imaging findings

Jump to navigation Jump to search

Hyperparathyroidism Microchapters


Patient Information


Historical Perspective




Differentiating Hyperparathyroidism from other Diseases

Epidemiology and Demographics

Risk Factors


Natural History, Complications and Prognosis


History and Symptoms

Physical Examination

Laboratory Findings


X Ray




Other Imaging Findings

Other Diagnostic Studies


Medical Therapy


Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hyperparathyroidism other imaging findings On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides


American Roentgen Ray Society Images of Hyperparathyroidism other imaging findings

All Images
Echo & Ultrasound
CT Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hyperparathyroidism other imaging findings

CDC on Hyperparathyroidism other imaging findings

Hyperparathyroidism other imaging findings in the news

Blogs on Hyperparathyroidism other imaging findings

Directions to Hospitals Treating Hyperparathyroidism

Risk calculators and risk factors for Hyperparathyroidism other imaging findings

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Anmol Pitliya, M.B.B.S. M.D.[2]


Imaging modalities may be helpful in preoperative localization of hyper-functioning parathyroid glands. This includes both non-invasive and invasive modalities. Non-invasive imaging modalities for preoperative localization of hyper-functioning parathyroid glands include Tc-99m sestamibi scintigraphy (sestamibi or MIBI), single photon emission computed tomography (SPECT), positron emission tomography (PET). Invasive modalities used for preoperative localization of hyper-functioning parathyroid glands include selective arteriography and angiography. Dual energy X-ray absorptiometry is helpful in detecting low bone mineral density (BMD) caused by hyperparathyroidism.

Other Imaging Findings

Other imaging modalities are used for preoperative localization of hyper-functioning parathyroid glands. This includes both non-invasive and invasive modalities. Another modality used in hyperparathyroidism is dual energy X-ray absorptiometry (DXA). DXA is helpful in detecting low bone mineral density (BMD) caused by hyperparathyroidism.

Non-invasive modalities

TC-99m Sestamibi Scintigraphy

Factors influencing sensitivity of Tc-99m sestamibi scintigraphy
Factors Sensitivity
Biochemical factors High serum calcium level[11] Increased
High serum parathyroid hormone level[11][12] Increased
Hypovitaminosis D [13]

(only in primary hyperparathyroidism)

Calcium channel blocker use[14]

(only in primary hyperparathyroidism)

Gross and architectural factors Size (Large)[15][16] Increased
Multi-glandular disease[17] Decreased
Cytological factors Increased amount of cellular content[15][16]

(Chief cells and oxyphil cells)

Immunohistochemical factors Increased P-glycoprotien expression[18] Decreased
Note: P-glycoprotein (Pgp) is a plasma membrane protein encoded by mammalian multidrug resistance gene (MDRI). Many drugs that are lipophilic and cationic at physiological pH interact with P-gp. Sestamibi is a lipophilic cationic on physioligical pH. P-gp acts as ATP-dependent efflux pump and prevents accumulation of sestamibi in parathyroid tissue. So, the uptake of sestamibi into parathyroid adenoma cells depends on the activity of the P-gp[19].
Dual tracer Tc-99m sestamibi scintigraphy - A nuclear medicine parathyroid scan demonstrates a parathyroid adenoma adjacent to the left inferior pole of the thyroid gland. The above study was performed with Technetium-Sestamibi (1st column) and Iodine-123 (2nd column) simultaneous imaging and the subtraction technique (3rd column). -- Source:Myohan at en.wikipedia, via Wikimedia Commons
Tc-99m sestamibi scan - Parathyroid adenomas typically retain activity on late scans after wash-out in the thyroid has occurred. - Source:Case courtesy of Dr Roberto Schubert, Radiopaedia.org, rID: 16675

Single photon emission computed tomography (SPECT)

Positron Emission Tomography (PET)

Invasive modalities

Selective arteriography


Dual Energy X-ray Absorptiometry (DXA)

  • Low bone mineral density (BMD) is caused by primary hyperparathyroidism. Distal forearm is affected most commonly.
  • DXA of distal forearm should be done in all patients of primary hyperparathyroidism. Very low T-score of distal forearm is observed in patients with primary hyperparathyroidism.[36]


  1. Palestro CJ, Tomas MB, Tronco GG (2005). "Radionuclide imaging of the parathyroid glands". Semin Nucl Med. 35 (4): 266–76. doi:10.1053/j.semnuclmed.2005.06.001. PMID 16150247.
  2. Hetrakul N, Civelek AC, Stagg CA, Udelsman R (2001). "In vitro accumulation of technetium-99m-sestamibi in human parathyroid mitochondria". Surgery. 130 (6): 1011–8. doi:10.1067/msy.2001.118371. PMID 11742331.
  3. Taillefer R, Boucher Y, Potvin C, Lambert R (1992). "Detection and localization of parathyroid adenomas in patients with hyperparathyroidism using a single radionuclide imaging procedure with technetium-99m-sestamibi (double-phase study)". J Nucl Med. 33 (10): 1801–7. PMID 1328564.
  4. Thulé P, Thakore K, Vansant J, McGarity W, Weber C, Phillips LS (1994). "Preoperative localization of parathyroid tissue with technetium-99m sestamibi 123I subtraction scanning". J Clin Endocrinol Metab. 78 (1): 77–82. doi:10.1210/jcem.78.1.8288719. PMID 8288719.
  5. Ryhänen EM, Schildt J, Heiskanen I, Väisänen M, Ahonen A, Löyttyniemi E; et al. (2015). "(99m)Technetium Sestamibi-(123)Iodine Scintigraphy Is More Accurate Than (99m)Technetium Sestamibi Alone before Surgery for Primary Hyperparathyroidism". Int J Mol Imaging. 2015: 391625. doi:10.1155/2015/391625. PMC 4333274. PMID 25722888.
  6. Eslamy HK, Ziessman HA (2008). "Parathyroid scintigraphy in patients with primary hyperparathyroidism: 99mTc sestamibi SPECT and SPECT/CT". Radiographics. 28 (5): 1461–76. doi:10.1148/rg.285075055. PMID 18794320.
  7. Haber RS, Kim CK, Inabnet WB (2002). "Ultrasonography for preoperative localization of enlarged [[parathyroid]] glands in primary hyperparathyroidism: comparison with (99m)technetium sestamibi scintigraphy". Clin Endocrinol (Oxf). 57 (2): 241–9. PMID 12153604. URL–wikilink conflict (help)
  8. Chapuis Y, Fulla Y, Bonnichon P, Tarla E, Abboud B, Pitre J, Richard B (1996). "Values of ultrasonography, sestamibi scintigraphy, and intraoperative measurement of 1-84 PTH for unilateral neck exploration of primary hyperparathyroidism". World J Surg. 20 (7): 835–9, discussion 839–40. PMID 8678959.
  9. Prasannan S, Davies G, Bochner M, Kollias J, Malycha P (2007). "Minimally invasive parathyroidectomy using surgeon-performed ultrasound and sestamibi". ANZ J Surg. 77 (9): 774–7. doi:10.1111/j.1445-2197.2007.04227.x. PMID 17685957.
  10. Gómez-Ramírez J, Sancho-Insenser JJ, Pereira JA, Jimeno J, Munné A, Sitges-Serra A (2010). "Impact of thyroid nodular disease on 99mTc-sestamibi scintigraphy in patients with primary hyperparathyroidism". Langenbecks Arch Surg. 395 (7): 929–33. doi:10.1007/s00423-010-0680-8. PMID 20625763.
  11. 11.0 11.1 Parikshak M, Castillo ED, Conrad MF, Talpos GB (2003). "Impact of [[hypercalcemia]] and [[parathyroid hormone]] level on the sensitivity of preoperative sestamibi scanning for primary hyperparathyroidism". Am Surg. 69 (5): 393–8, discussion 399. PMID 12769210. URL–wikilink conflict (help)
  12. Siegel A, Alvarado M, Barth RJ, Brady M, Lewis J (2006). "Parameters in the prediction of the sensitivity of parathyroid scanning". Clin Nucl Med. 31 (11): 679–82. doi:10.1097/01.rlu.0000242212.23936.a7. PMID 17053383.
  13. Kandil E, Tufaro AP, Carson KA, Lin F, Somervell H, Farrag T; et al. (2008). "Correlation of plasma 25-hydroxyvitamin D levels with severity of primary hyperparathyroidism and likelihood of parathyroid adenoma localization on sestamibi scan". Arch Otolaryngol Head Neck Surg. 134 (10): 1071–5. doi:10.1001/archotol.134.10.1071. PMID 18936353.
  14. Friedman K, Somervell H, Patel P, Melton GB, Garrett-Mayer E, Dackiw AP; et al. (2004). "Effect of calcium channel blockers on the sensitivity of preoperative 99mTc-MIBI SPECT for hyperparathyroidism". Surgery. 136 (6): 1199–204. doi:10.1016/j.surg.2004.06.047. PMID 15657576.
  15. 15.0 15.1 Mehta NY, Ruda JM, Kapadia S, Boyer PJ, Hollenbeak CS, Stack BC (2005). "Relationship of technetium Tc 99m sestamibi scans to histopathological features of hyperfunctioning parathyroid tissue". Arch Otolaryngol Head Neck Surg. 131 (6): 493–8. doi:10.1001/archotol.131.6.493. PMID 15967881.
  16. 16.0 16.1 Takebayashi S, Hidai H, Chiba T, Takagi Y, Nagatani Y, Matsubara S (1999). "Hyperfunctional parathyroid glands with 99mTc-MIBI scan: semiquantitative analysis correlated with histologic findings". J Nucl Med. 40 (11): 1792–7. PMID 10565772.
  17. Haciyanli M, Lal G, Morita E, Duh QY, Kebebew E, Clark OH (2003). "Accuracy of preoperative localization studies and intraoperative [[parathyroid hormone]] assay in patients with primary hyperparathyroidism and double [[adenoma]]". J Am Coll Surg. 197 (5): 739–46. doi:10.1016/S1072-7515(03)00676-8. PMID 14585407. URL–wikilink conflict (help)
  18. Gupta Y, Ahmed R, Happerfield L, Pinder SE, Balan KK, Wishart GC (2007). "P-glycoprotein expression is associated with sestamibi washout in primary hyperparathyroidism". Br J Surg. 94 (12): 1491–5. doi:10.1002/bjs.5882. PMID 17929232.
  19. Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA, Croop JM (1993). "Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex". Cancer Res. 53 (5): 977–84. PMID 8094997.
  20. Billotey C, Sarfati E, Aurengo A, Duet M, Mündler O, Toubert ME; et al. (1996). "Advantages of SPECT in technetium-99m-sestamibi parathyroid scintigraphy". J Nucl Med. 37 (11): 1773–8. PMID 8917173.
  21. Civelek AC, Ozalp E, Donovan P, Udelsman R (2002). "Prospective evaluation of delayed technetium-99m sestamibi SPECT scintigraphy for preoperative localization of primary hyperparathyroidism". Surgery. 131 (2): 149–57. PMID 11854692.
  22. Strand SE, Ivanovic M, Erlandsson K, Franceschi D, Button T, Sjögren K; et al. (1994). "Small animal imaging with pinhole single-photon emission computed tomography". Cancer. 73 (3 Suppl): 981–4. PMID 8306288.
  23. Jaszczak RJ, Li J, Wang H, Zalutsky MR, Coleman RE (1994). "Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT". Phys Med Biol. 39 (3): 425–37. PMID 15551591.
  24. Schachter PP, Issa N, Shimonov M, Czerniak A, Lorberboym M (2004). "Early, postinjection MIBI-SPECT as the only preoperative localizing study for minimally invasive parathyroidectomy". Arch Surg. 139 (4): 433–7. doi:10.1001/archsurg.139.4.433. PMID 15078713.
  25. Perez-Monte JE, Brown ML, Shah AN, Ranger NT, Watson CG, Carty SE; et al. (1996). "Parathyroid adenomas: accurate detection and localization with Tc-99m sestamibi SPECT". Radiology. 201 (1): 85–91. doi:10.1148/radiology.201.1.8816526. PMID 8816526.
  26. Spanu A, Falchi A, Manca A, Marongiu P, Cossu A, Pisu N; et al. (2004). "The usefulness of neck pinhole SPECT as a complementary tool to planar scintigraphy in primary and secondary hyperparathyroidism". J Nucl Med. 45 (1): 40–8. PMID 14734671.
  27. Carlier T, Oudoux A, Mirallié E, Seret A, Daumy I, Leux C, Bodet-Milin C, Kraeber-Bodéré F, Ansquer C (2008). "99mTc-MIBI pinhole SPECT in primary hyperparathyroidism: comparison with conventional SPECT, planar scintigraphy and ultrasonography". Eur. J. Nucl. Med. Mol. Imaging. 35 (3): 637–43. doi:10.1007/s00259-007-0625-9. PMC 2964350. PMID 17960377.
  28. Nguyen BD (1999). "Parathyroid imaging with Tc-99m sestamibi planar and SPECT scintigraphy". Radiographics. 19 (3): 601–14, discussion 615-6. doi:10.1148/radiographics.19.3.g99ma10601. PMID 10336191.
  29. Lindqvist V, Jacobsson H, Chandanos E, Bäckdahl M, Kjellman M, Wallin G (2009). "Preoperative 99Tc(m)-sestamibi scintigraphy with SPECT localizes most pathologic parathyroid glands". Langenbecks Arch Surg. 394 (5): 811–5. doi:10.1007/s00423-009-0536-2. PMID 19578871.
  30. Wimmer G, Profanter C, Kovacs P, Sieb M, Gabriel M, Putzer D; et al. (2010). "CT-MIBI-SPECT image fusion predicts multiglandular disease in hyperparathyroidism". Langenbecks Arch Surg. 395 (1): 73–80. doi:10.1007/s00423-009-0545-1. PMID 19705144.
  31. Tang BN, Moreno-Reyes R, Blocklet D, Corvilain B, Cappello M, Delpierre I; et al. (2008). "Accurate pre-operative localization of pathological parathyroid glands using 11C-methionine PET/CT". Contrast Media Mol Imaging. 3 (4): 157–63. doi:10.1002/cmmi.243. PMID 18781582.
  32. Weber T, Maier-Funk C, Ohlhauser D, Hillenbrand A, Cammerer G, Barth TF; et al. (2013). "Accurate preoperative localization of parathyroid adenomas with C-11 methionine PET/CT". Ann Surg. 257 (6): 1124–8. doi:10.1097/SLA.0b013e318289b345. PMID 23478517.
  33. Traub-Weidinger T, Mayerhoefer ME, Koperek O, Mitterhauser M, Duan H, Karanikas G; et al. (2014). "11C-methionine PET/CT imaging of 99mTc-MIBI-SPECT/CT-negative patients with primary hyperparathyroidism and previous neck surgery". J Clin Endocrinol Metab. 99 (11): 4199–205. doi:10.1210/jc.2014-1267. PMID 25029418.
  34. Powell AC, Alexander HR, Chang R, Marx SJ, Skarulis M, Pingpank JF; et al. (2009). "Reoperation for parathyroid adenoma: a contemporary experience". Surgery. 146 (6): 1144–55. doi:10.1016/j.surg.2009.09.015. PMC 3467310. PMID 19958942.
  35. Miller DL, Chang R, Doppman JL, Norton JA (1989). "Localization of parathyroid adenomas: superselective arterial DSA versus superselective conventional angiography". Radiology. 170 (3 Pt 2): 1003–6. doi:10.1148/radiology.170.3.2644666. PMID 2644666.
  36. Wood K, Dhital S, Chen H, Sippel RS (2012). "What is the utility of distal forearm DXA in primary hyperparathyroidism?". Oncologist. 17 (3): 322–5. doi:10.1634/theoncologist.2011-0285. PMC 3316917. PMID 22258698.

Template:WH Template:WS