Steric effects

Jump to navigation Jump to search

WikiDoc Resources for Steric effects


Most recent articles on Steric effects

Most cited articles on Steric effects

Review articles on Steric effects

Articles on Steric effects in N Eng J Med, Lancet, BMJ


Powerpoint slides on Steric effects

Images of Steric effects

Photos of Steric effects

Podcasts & MP3s on Steric effects

Videos on Steric effects

Evidence Based Medicine

Cochrane Collaboration on Steric effects

Bandolier on Steric effects

TRIP on Steric effects

Clinical Trials

Ongoing Trials on Steric effects at Clinical

Trial results on Steric effects

Clinical Trials on Steric effects at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Steric effects

NICE Guidance on Steric effects


FDA on Steric effects

CDC on Steric effects


Books on Steric effects


Steric effects in the news

Be alerted to news on Steric effects

News trends on Steric effects


Blogs on Steric effects


Definitions of Steric effects

Patient Resources / Community

Patient resources on Steric effects

Discussion groups on Steric effects

Patient Handouts on Steric effects

Directions to Hospitals Treating Steric effects

Risk calculators and risk factors for Steric effects

Healthcare Provider Resources

Symptoms of Steric effects

Causes & Risk Factors for Steric effects

Diagnostic studies for Steric effects

Treatment of Steric effects

Continuing Medical Education (CME)

CME Programs on Steric effects


Steric effects en Espanol

Steric effects en Francais


Steric effects in the Marketplace

Patents on Steric effects

Experimental / Informatics

List of terms related to Steric effects


See also: intramolecular forces

Steric effects arise from the fact that each atom within a molecule occupies a certain amount of space. If atoms are brought too close together, there is an associated cost in energy due to overlapping electron clouds (Pauli or Born repulsion), and this may affect the molecule's preferred shape (conformation) and reactivity.

There are several types of steric effects:

Steric hindrance or steric resistance occurs when the size of groups within a molecule prevents chemical reactions that are observed in related smaller molecules. Although steric hindrance is sometimes a problem, it can also be a very useful tool, and is often exploited by chemists to change the reactivity pattern of a molecule by stopping unwanted side-reactions (steric protection). Steric hindrance between adjacent groups can also restrict torsional bond angles. However, hyperconjugation has been suggested as an explanation for the preference of the staggered conformation of ethane because the steric hindrance of the small hydrogen atom is far too small. [1] [2].

Steric shielding occurs when a charged group on a molecule is seemingly weakened or spatially shielded by less charged (or oppositely charged) atoms, including counterions in solution (Debye shielding). In some cases, for an atom to interact with sterically shielded atoms, it would have to approach from a vicinity where there is less shielding, thus controlling where and from what direction a molecular interaction can take place.

Steric attraction occurs when molecules have shapes or geometries that are optimized for interaction with one another. In these cases molecules will react with each other most often in specific arrangements.

Chain crossing — A random coil can't change from one conformation to a closely related shape by a small displacement if it would require one polymer chain to pass through another, or through itself.

Understanding steric effects is critical to chemistry, biochemistry and pharmacology. In chemistry, steric effects are nearly universal and affect the rates and energies of most chemical reactions to varying degrees. In biochemistry, steric effects are often exploited in naturally occurring molecules such as enzymes, where the catalytic site may be buried within a large protein structure. In pharmacology, steric effects determine how and at what rate a drug will interact with its target bio-molecules.

See also


  1. Hyperconjugation not steric repulsion leads to the staggered structure of ethane Pophristic, V. & Goodman, L. Nature 411, 565–568 (2001)Abstract doi:10.1038/35079036
  2. Chemistry: A new twist on molecular shape Frank Weinhold Nature 411, 539-541 (31 May 2001) doi:10.1038/35079225

External links